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Abstract 
Statistically, the longest path in a VLSI circuit is not 

uniquely defined when process variation is 

considered. In fact, any long enough path could 

possibly becomes the longest one after fabrication. 

The probability distribution of the longest path delay 

should be collectively decided by the long enough 

paths. In this paper Gumbel distribution is proposed 

to approximate this probability distribution. The 

advantage over the PERT approach is that multiple 

long enough paths are considered and their 

underlying path delay distributions can be unknown. 

The results from experimenting with the ISCAS’85 

benchmark circuits show its effectiveness. The 

probability distribution can be employed to compute 

the timing failure probability of a circuit with a given 

clock cycle period.  

1. Introduction 
Statistical timing analysis (STA) [1,2], taking into 

account the variation of fabrication process, provides 

designers with a probability distribution of the longest 

path delay. It is often used along with the 

block-oriented path tracing [3,4] to justify the timing 

performance of a circuit. The probability distribution 

can be employed to compute the probability of timing 

failure.  

Two methods have been used to find a probability 

distribution of the longest path delay of a circuit. The 

first method is statistical timing simulation. Although 

it can generate a fairly accurate probability 

distribution of the longest path delay when a large 

number of experiments is performed, it is 

computationally intensive for a large VLSI circuit. 

Therefore, the past research has focused on 

developing efficient methods to reduce simulation 

time. In [5] the authors derive a set of symbolic delay 

expressions for the paths which may be potentially 

the longest one. Simulation is then performed to 

generate the longest path delay based on the set of 

symbolic delay expressions. This approach is very 

efficient when the number of delay expressions is 

small, but the assumption that the delays of two cell 

instances referencing the same library cell are treated 
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as a single random variable is misleading. In [6] a 

part of circuit consisting of k dominant long paths is 

taken for timing simulation with correlation of node 

delay being taken into account. Since k is usually 

relatively smaller, compared to the number of paths in 

the whole circuit, the computational time is greatly 

reduced.  

The second method is based on the PERT-like [2,7] 

approach which approximates the real probability 

distribution by the probability distribution of the path 

with the largest mean delay. This distribution is 

accurate when there are only a few dominant long 

paths in a circuit, not a very likely case for a high 

performance VLSI circuit. In [8] an approximated 

probability distribution was employed to find the 

probability of timing failure of a circuit. Statistical 

correlation among paths are considered, but it is 

computationally intensive.  

Researches on the probability distribution of the 

longest path delay for stochastic networks [7,9] have 

long been performed. Among the most successful 

researches, PERT stands out as the most widely used 

technique. However, PERT may underestimate the 

probability of timing failure as the number of 

dominant long paths is large. Recent researches such 

as the one in [9] are proposed to tackle this problem 

for stochastic networks. In this paper we make an 

attempt to apply the result found in [9] to STA of 

VLSI circuits, one type of stochastic networks. 

Several approaches are proposed to characterize the 

number of dominant long paths in a circuit and the 

parameters of the probability distribution. The rest of 

this paper is organized as follows. Section 2 contains 

a preliminary about STA. Section 3 depicts the 

approach to STA based on extreme value distribution. 

The experimental results from the ISCAS’85 

benchmark circuits are demonstrated in Section 4. 

Some concluding remarks are drawn in Section 5. 

2. Preliminary 
Although statistical approach has been used to 

address the problem of timing failure of a circuit, a 

problem formulation of STA is only recently defined 

explicitly in [6]. The problem is briefly stated as 

follows. Let G=(V,E) be a directed acyclic graph that 

represents a VLSI circuit. V is the set of vertices that 

represent the logic cells and E is the set of edges that 



represent the signal nets connecting the logic cells. A 

path   in the graph G is defined as an alternating 

sequence of vertices and edges from one of the 

sources (primary inputs or memory devices) to one of 

the sinks (primary outputs or memory devices). Let V 

and E be respectively the sets of vertices and signal 

nets of the path. Then, the path delay T of path   is 

expressed as  
  


EVv

v NST , where Sv is the 

switching delay of a logic cell, and N is the 

propagation delay of a signal net. To simplify the 

discussion we combine cell (or vertex) delay and 

signal net (or edge) delay into node delay. Since long 

paths usually decide the timing performance of a 

circuit, only long paths that could possibly violate 

setup time are considered in this paper. The approach 

to short paths is similar.  

The distribution of the largest (or smallest) value of a 

random variable is called the largest (or smallest) 

extreme value distribution. Thus, the problem of STA 

can be formulated as follows: 

Given a set  miT
i

,...,2,1   of random 

variables which represent all the possible path delays 

in a VLSI circuit, where T
i
 and  i  are defined 

above, find the probability distribution of the largest 

extreme of the statistics  

miTMaxY
i

i

,...,2,1),( 
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


     (1) 

and compute the timing failure probability 

)Pr(1 rY   for a given projected latest required 

arrival time r.   

3. Extreme Value Distribution Approach 
Solving STA problem by simulation or multivariate 

analysis could need a large amount of memory and 

time for very large circuits. Since no closed-form 

solution exists so far except for some special cases, 

only approximate solutions are possible. The 

difficulties of obtaining an exact distribution for the 

statistics Y are due to dependency among paths and 

non-identical distribution of path delays. There are 

two special cases [10] that the distribution of Y can be 

obtained. First, if the path delays
m

TTT  ,...,,
21

are 

independent random variables, the probability of 

timing failure can be computed by 
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where )Pr()( rTrF
ii   . Second, if 

m
TTT  ,...,,

21
are independent and identical 

distributions with )()( rFrF i  , from (2) we obtain 
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When m approaches infinity, the distribution of Y, i.e. 

)]([ rF
m

, asymptotically converges to one of the 

extreme value distributions, Gumbel, Weibull or 

Frechet distribution irregardless of the underlying 

path delay distribution.  

However, it is generally true that only long enough 

paths (dominant long paths) are viable for being the 

longest one. If just k dominant long paths (k << m) 

are considered, the statistics Y can be approximated 

as follows: 

  kiTM a xY
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where U is the set of kU  dominant long paths.  

Thus, the timing failure probability can be rewritten 

as )Pr(1 rY  . In general, the number of paths in a 

VLSI cicuit is finite and their path delay distributions 

are not independently and identically distributed. 

However, for a highly optimized circuit the dominant 

long paths should be more or less identically 

distributed and the number of dominant long paths 

should be sufficiently large so that they can be treated 

as independent ones [9]. Since each individual path 

delay distribution usually behaves like a normal one, 

the largest extreme for the statistics Y   is more like 

a Gumbel distribution [9-11] when k is sufficiently 

large.  

The general form of the two-parameter Gumbel 

distribution function is  

)exp()()Pr( )(
eyGyY ab kk y       (5) 

where ak  is the location parameter (mode) and 

bk  is the scale parameter. The mean  and variance 


2 of a Gumbel distribution can be written in terms 

of ak  and bk  as follows: 

ba kk /57722.0  and )6/( 222
bk    (6) 

The values of ak  and bk  can be computed if the 

underlying path delay distribution (or the parent 

distribution) satisfies some conditions [11]. Since the 

path delays are normally distributed, these conditions 

can be satisfied. So from [11], it follows that  
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where k is an integer to represent the number of path 

random variables that are identically and 

independently distributed with mean  p
 and standard 

deviation  p . Note that in real applications the 

dominant long path delay distribution can be 

unknown as long as the required conditions [1] are 

satisfied. Thus, to use Gumbel distribution, k,  p
, and 

 p  must be found out. Four approaches, called 

Max_, Worst_case,  3_ Max , and Weighting, 

are proposed to obtain k,  p
 and  p . 

(a). Max_: k is simply set equal to the ratio of the 

gate count in the whole circuit to the number of nodes 

(gates) on the path with the largest mean delay. The 

parameters  p
and  p are respectively set equal to 

the mean and standard deviation of the path with the 

largest mean delay. 



(b). Worst_case: k is obtained in the same manner as 

that for Max_. However, the parameter  p
and 

 p are respectively set equal to the mean and the 

standard deviation of the longest path delay obtained 

by worst-case path tracing [3,4]. 

(c).  3_ Max : k is obtained in the same 

manner as that for Max_. However, the 

parameters  p
and  p are respectively set equal to 

the mean and standard deviation of path  i  such 

that   

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. Path  j  is among 

the first n longest paths with path delays   jj
3  

greater than a delay threshold  PERTPERT
28.1 , 

where PERT
and  PERT  are respectively the mean 

and standard deviation of the longest path delay 

obtained by the PERT approach. If the number of 

paths of this sort is too large, the n’s value is set to 

20,000.  

(d). Weighting:    
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where  i
and  i  are respectively the mean and 

standard deviation of the path  i  which is one of the 

first n longest paths, obtained in the same manner as 

that for  3_ Max , and  w  is the standard 

deviation of the delay of the first longest path. This 

function takes  i
and  i of the path  i  into 

consideration when deciding k’s value. The larger the 

values of  i
and  i  are, the more contribution of 

the path delay of i  to the longest path delay is. The 

parameters  p
and  p  are obtained in the same 

manner as that for Worst_case.  

4. Experimental Results 
The ISCAS’85 benchmark circuits are used to test the 

proposed approaches. They are first synthesized by 

Berkeley SIS system [12] with different optimization 

objectives based on genlib [13]. An algorithm [14] is 

then employed to extract k dominant long paths. The 

program for extracting k dominant long paths is 

written in C language and is run on UltraSparc II 

workstations. In our experiments, each node delay in 

the circuits is treated as an independent random 

variable. If two cell instances refer to the same cell in 

the library, their delays are treated as two different 

random variables. The node delay consists of the 

switching delay of a cell and the delay caused by the 

fanout loads. Since a cell i in genlib is only given 

with nominal delay  i
 and it is also demonstrated in 

[15] that the ratio of the best to worst falling time of 

an inverter at 6 is 4.7, the formula 7.4
6

6





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is employed to compute the standard deviation  i  

of node delay. The delay distribution of a gate (cell) 

instance that references a library cell i is assumed to 

be normally distributed with   ii
N , , but it can 

be any other distribution. 

Table 1 shows the mean values and standard 

deviations of the distribution of the longest path delay 

obtained by various approaches. Compared to the 

PERT approach, the means of the longest path delay 

distributions approximated by Gumbel distributions 

are relatively closer to those obtained by simulation. 

Note that Max_, Worst_case, and  3_ Max  

have the same k’s value for each circuit. The 

cumulative probability distributions (c.d.f.) for some 

circuits are depicted in Figure 1 to 2. The solid lines 

in the figures are the c.d.f. of the longest path 

distribution obtained by simulation. It is obvious that 

the tail of each Gumbel distribution is much better 

matched to the tail of the corresponding simulated 

distribution. 

 
Table 1. Parameters of probability distribution of the longest path delay 

 
 

Table 2 shows the timing success probability for each 

distribution by giving a latest required arrival time, 

set equal to +3 of the longest path obtained by the 

PERT approach. The timing failure probability of 

each circuit is equal to )3Pr(1   Y , where 

)3Pr(  Y  is the timing success probability. 

Worst_case,  3_ Max  and Weighting give the 

best prediction of the timing failure probability in 

average. Especially, Worst_case is quite efficient 

because it only needs to find the longest path by 

worst-case path tracing. 

 
Table 2. Timing success probability at  3  of PERT 

Circuit 

name 

PERT 

(μ +3σ ) 

Simulation Gumbel distribution 

Max_μ  Worst_case Max_μ +3σ  Weighting 

C17 99.87% 99.63% 96.12% 94.74% 94.74% 94.37% 

C499 99.87% 36.31% 95.14% 42.34% 41.32% 55.16% 

C880 99.87% 98.23% 96.26% 95.09% 91.42% 96.20% 

C432 99.87% 97.96% 97.12% 96.04% 96.04% 96.63% 

C1908 99.87% 90.57% 95.97% 93.03% 92.33% 91.30% 

C2670 99.87% 96.77% 94.89% 89.78% 89.78% 93.03% 

C3540 99.87% 93.61% 94.86% 93.56% 89.70% 95.21% 

C5315 99.87% 92.14% 92.23% 68.40% 64.24% 80.67% 

C1355 99.87% 12.07% 95.23% 58.77% 58.18% 58.52% 

C7552 99.87% 94.02% 87.70% 63.52% 63.52% 76.33% 

C6288 99.87% 38.72% 95.89% 95.48% 93.72% 95.34% 

Mean 99.87% 77.27% 94.67% 80.98% 79.54% 84.80% 



Figure 1.  Cumulative distribution functions of the longest path delay of C499
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Figure 2. Cumulative distribution functions of the longest path delay of C3540

Simulation
PERT
Max_μ
Worst_case
Max_μ +3σ
Weighting

 

6. Concluding Remarks and Future Work 
Although it is found that the average timing failure 

probability predicted by Gumbel distribution for a 

given latest required arrival time, set to  3  of 

the longest path delay obtained by the PERT 

approach, is in average better than that is predicted by 

the PERT approach. However, for some of the 

circuits such as C1355, C7522 and C6288, the 

proposed approaches do not performed well. This 

may be caused by the fact that path correlation is not 

considered in our implementation. What still left 

unconsidered in our current implementation is false 

path problem [16] and correlation of node delays. In 

the future, we will work to see how false paths and 

the correlation of node delays and path delays would 

influence the effectiveness of the extreme value 

approach. 
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